2019 32nd IEEE International System-on-Chip Conference (SOCC) 978-1-7281-3483-3/20/$31.00 ©2020 IEEE 10.1109/SOCC46988.2019.1570547988

A Glitch Key-Gate for Logic Locking

De-Xuan Ji, Hsiao-Yu Chiang, Chia-Chun Lin, Chia-Cheng Wu, Yung-Chih Chen, and Chun-Yao Wang

Abstract—Logic locking is a technique used for intellectual property
protection. An effective attacking method based on satisfiability (SAT)
algorithm, known as SAT attack, was proposed to decrypt an encrypted
design successfully. To strengthen logic locking, this paper proposes a
glitch-based logic locking method designed for sequential circuits. The
proposed new schemes of key-gates can generate glitches, and use rising
and falling transitions as key-inputs for the comprehensive logic locking.
Experimental results show that the proposed glitch key-gate (GK) has
high capability to be embedded in a set of IWLS2005 Benchmarks [22].
The cell area overhead in the designs encrypted with GKs are 10.68 %,
12.22%, and 26.11% on average for encryptions with 8, 16, and 32 key-
inputs, respectively, and the overhead can be reduced substantially when
the GKs are combined with other logic locking methods.

I. INTRODUCTION

Semiconductor industry is built on a large-scale supply chain
associated with many different companies distributed worldwide due
to globalization of integrated circuit (IC) design business. Design
companies often pass their designs to the foundries for fabrications.
If there exists an untrusted foundry, the designs could be threatened
by intellectual property (IP) piracy and other improper usages. Thus,
many different hardware security techniques have been proposed [8].

Among a variety of hardware security techniques, logic locking is
an effective technique for hardware IP protection. The basic concept
of logic locking is to hide the functionalities of circuits by inserting
a number of key-gates that are controlled by a key-vector. A classic
XOR/XNOR-based logic locking technique [9] is shown in Fig. 1.
Fig. 1(a) is the original circuit and Figs. 1(b) and 1(c) are both the
encrypted circuits by inserting two key-gates. In Fig. 1(b), two key-
gates are inserted at the outputs of the circuit, and they work as buffers
to keep the outputs as the same as the original ones. In addition, the
XOR/XNOR based key-gates can be designed as inverters to encrypt
the circuit as shown in Fig. 1(c). As a result, it is challenging for
attackers to identify a buffer or an inverter that each XOR/XNOR-
based key-gate works as, and the difficulty of decryption grows
exponentially with the number of key-gates. Based on this concept
of inserting key-gates and using a key-vector as a license, there were
several logic locking techniques proposed in [1] [7] [9] [12] [13] [14]
[17] recently.

However, these logic locking methods for the combinational block
of designs faced a great challenge recently from SAT attack proposed
in [11]. SAT attack is an attacking method based on Boolean
satisfiability (SAT) algorithms. The attacking model assumes that
attackers have two essentials in hand: (1) An encrypted netlist with
key-gate insertion; (2) A functionally correct chip with the correct
key-vector assigned to it. SAT attack constructs a miter-like circuit
with two copies of the encrypted netlist to identify the differences
between their primary outputs (POs). Note that both netlists share
the same primary inputs (PIs) but their key-inputs are independent.
Then SAT solvers will be called to compute their distinguishing input
patterns (DIPs) iteratively. DIP is an input pattern that can make two

This work is supported in part by the Ministry of Science and Technol-
ogy of Taiwan under MOST 106-2221-E-007-111-MY3, MOST-106-2314-
B-007-005, MOST 106-2622-8-007-015-TA, MOST 107-2622-8-007-014-TA,
MOST 107-2221-E-155-046, and MOST 108-2221-E-155-047.

D.-X. Ji, H.-Y. Chiang, C.-C. Lin, C.-C. Wu, and C.-Y. Wang are with the
Department of Computer Science, National Tsing Hua University, Hsinchu,
Taiwan 30013, R.O.C.

Y.-C. Chen is with the Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan 32003, R.O.C.

978-1-7281-3483-3/19/$31.00 ©2019 IEEE

different key-vectors of encrypted netlist generate different outputs.
When a DIP is found by the SAT solver, the functionally correct
chip will be evaluated for the correct output of the DIP. Then the SAT
solver uses the correct relation between the DIP and its corresponding
POs to make the SAT solver filter out incorrect key-vectors. The
attack will be successful when there is no DIP found by the SAT
solver, which means all the incorrect key-vectors are filtered out.

Due to the effective decryption from SAT attack, some SAT attack-
resistant methods were proposed [13] [14]. The objectives of these
methods were to drag out the time required in the process of SAT
attack. SARLock [14] used the concept of Point-Function [10] to
achieve the effect that only one incorrect key-vector will be filtered
out by a single DIP. Besides, Anti-SAT [13] took advantage of the
difference between the on-set and off-set sizes of a function to build
the security structure. Then the structure weakened the corruptibility
to POs by incorrect key-vectors for mitigating the DIP search in SAT
attack. Thus, the required efforts from SAT solvers in these methods
grow exponentially with the increase of key-input number.

However, these SAT attack-resistant methods have vulnerabilities
to removal attack [15] [16], which is a method removing or bypassing
security structures to restore the original functions. Hence, these SAT
attack-resistant methods have to be integrated with other obfuscation
methods to hide the security structures. On the other hand, these
methods caused little differences between the POs of encrypted circuit
assigned with incorrect key-vector and the POs of original circuit.
Hence, they have to rely on other encryption techniques to increase
the corruptibility of the incorrect key-vectors. Unfortunately, an
attacking method [10] exploited the dependence on other encryption
techniques to crack these SAT attack-resistant methods.

As logic locking on combinational block has encountered afore-
mentioned dilemma, researchers turn to develop logic locking tech-
niques for sequential part [12]. SAT-based attacking methods usually
cannot well deal with transitional data, like delay or timing. Hence,
a timing-based logic locking method with a Tunable Delay Key-gate
(TDK) scheme was proposed in [12]. As shown in Figs. 2(a) and 2(b),
a TDK consists of a functional key-gate, i.e., an XOR gate, and a
Tunable Delay Buffer (TDB), and they are separately controlled by a
functional-key k1 and a delay-key k2. When k> is incorrect, the delay
of TDB will either be added into the timing path for violating the
setup time constraints as shown in Fig. 2(c), or be taken away from
the timing path for violating the hold time constraint as shown in
Fig. 2(d). However, this scheme could also suffer from the removal
attack. This is because although the removal of the TDB and the
delay-key k2 may violate the timing constraints, the netlist after this
removal can be re-synthesized to fix the timing violations, then SAT
attack can be applied further to decrypt it. As a result, the decrypted
designs can be operated normally with little performance degradation.

In this paper, to deal with the vulnerabilities to SAT attack and

Fig. 1.
Encrypted circuits.

XOR/XNOR-based logic locking: (a) An original circuit. (b)(c)

74

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

Tunable Delay Buffer (TDB)

X = klE- Y
Tunable Delay
Fey = Key-gate —Y
TDK Capacity gat
ke,— () |:ad ¥ C ¥

(a)

—Do—Do— y
k, = 1 (correct)
—Do—[>o— y

k; = 0 {correct)
| >0
k> = 0 (incorrect)

| So—»
(c) (d)

k> = 1 {incorrect)
Fig. 2. A Tunable Delay Key-gate [12]: (a) Overview. (b) Implementation.
(c) ko = 0 is correct. (d) k2 = 1 is correct.

removal attack, we propose new schemes of Glitch Key-gate (GK)
for logic locking in sequential circuits. Different from the previous
SAT attack-resistant methods, which mitigate the efficiency of SAT
attack, GK encryption tends to invalidate SAT attack from basis. GK
encryption mainly focuses on generating glitches and using timing
sensitivity of the glitches to encrypt designs. Since glitches are the
phenomenon occurring within signal transitions, SAT-based attack
will have troubles dealing with them. It is not only because SAT
solver cannot handle transition signals, but also because the momen-
tary value on the level of a glitch is invisible from the viewpoint
of logic implication that SAT algorithm relies upon. Besides, the
mentioned glitches generated by GKs can be designed to work as
inverters or buffers at different timings to transmit data under different
key-inputs upon the requests from designers. This feature ensures the
corruptibility of the encryption with GKs.
The main contributions of this work are threefold:

o We propose new schemes of Glitch Key-gate (GK).

o The proposed GKs introduce the characteristic of glitch into
logic locking to defend SAT attack and removal attack, and
extend the key-inputs of key-gates to transitional signals.

o A thorough design flow incorporating existing commercial EDA
tools for inserting GKs into designs is demonstrated.

II. GLITCH KEY-GATE

In this section, we introduce the proposed Glitch Key-gates (GKs).
A GK has two inputs, one is the signal to be encrypted and the other
is the key-input. The key-input can be assigned as a constant 0, 1,
a rising or a falling transition. When the key-input is a constant, the
output of GK is glitchless. However, when the key-input is a rising
or a falling transition, the GK generates a glitch at the output. The
details about how our GKs work will be introduced in this section.
A. Working Mechanism of GK

The basic structures of GKs are shown in Fig. 3, where x is the
input signal to be encrypted, key is the key input, y is the output, and
A, B are delay elements with delay values DA and DB, respectively.

Let us explain the behavior of the proposed GKs. In Fig. 3(a),
when the key-input is 0, the MUX will select the upper XNOR gate,
and the XNOR gate works as an inverter. Similarly, when the key-
input is 1, the MUX will select the lower XOR gate, and the XOR
gate works as an inverter as well. Hence, we summarize that when
the key-input is either assigned a constant O or 1, the output y is z’.

However, a glitch occurs at the output y when the key-input key
is a rising or a falling transition due to the delay elements A and B
with different delay values DA and DB. Fig. 4 is a timing diagram
showing the internal signals of the GK in Fig. 3(a) under the input
z =1, DA = 2ns, and DB = 3ns. To simply the description about

75

key y Glitch’s
length
Oorl x -
01 X 3x2x DB
10 X 3x2x DA
()
key y Glitch’s
length
Oorl x -
01 x=>x x DB
120 x>x"2x DA

(b)
Fig. 3. (a) The proposed GK. (b) The proposed GK with an opposite allocation
of XOR and XNOR gates.

key
o
' A * 1
Ao ool 2
v ' 4 °
f 5 ;
B ta b " Dei -|
- o
: 1
¥ DB L oA n
{inverter) {buffer) (inverter) {buffer) : {inverter)

3 [11 13 {ns)

0
Fig. 4. A diagram showing signals of the GK in Fig. 3(a) when z is 1.

the behavior of the GK, here we first ignore gate delays, which will
be discussed in Sec. IV. In Fig. 4, during the period of (0, 3) ns,
the output y = 2’ = 1’ = 0 since the GK works as an inverter as
mentioned in the last paragraph. When a rising transition occurs at
3ns on the key-input key, Aoy and B,y need 2ns and 3ns to update
the values, respectively. However, the MUX immediately selects the
Bou: and reports the old value of B,.:. After the DB delay (3ns), the
output of MUX obtains the updated value such that a glitch, from
3ns to 6ns with the length of DB, is generated. Similarly, the falling
transition at 11ns also triggers a glitch with the length of DA.

Now we can see that the GK in Fig. 3(a) is able to work as an
inverter when the key-input is a constant, and it can also generate a
glitch to work as a buffer for a certain delay period when the key-
input is a transitional signal. Besides, if we exchange the locations
of the XNOR and XOR gates in the GK as shown in Fig. 3(b), the
behavior of the GK will be completely opposite. That is, the GK will
work as a buffer when the key-input is a constant; the generated glitch
will work as an inverter when the key-input is transitional signal.

In summary, using the proposed GKs, designers can have a key-
gate working as an inverter or a buffer under the correct key-input
assigned at precise timing.

B. Key Generator for GK

As we discussed above, some behavior of GKs needs transitions
to trigger. Hence, in this subsection, we discuss the implementation
of generating these transitions. Since the proposed GKs are designed
to encrypt sequential circuits, the behavior of a GK should be same
in each clock cycle. If the predetermined behavior of a GK needs
a transitional signal to trigger, a transitional signal generated and
assigned to the key-input of the GK in every clock cycle is necessary.

We build a key generator (KEYGEN) for providing a transitional
signal in each clock cycle. However, we need to shift the transitional
signals with an adjustable delay for controlling the timing of trig-
gering the transitional signals to key-input of GK. For the adjustable
delay, we implement a simplified version of Adjustable Delay Buffer

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

Glitch
Key-Gate =y
[

clk —
Key |key.out
Generator ke

rst

{a) (b}
Fig. 5. (a) The structure of a KEYGEN. (b) The overall connection of
KEYGEN with GK.

Diagrams of key_out

=

Constant 0
o

¢ Transitions
at dns, 12ns
o

DA DA

=]

1
Transitions

g at Tns, 15ns

DOB DB

=]
£
1

!
Constant 1
o

clk | | " Clock
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (ns)

Fig. 6. A diagram showing the signal on key_out of KEYGEN.

(ADB. The simplified ADB is a MUX with different delays inserted at
its inputs, then we can select different delays by different assignments
to selection pins of the MUX.

Consisting of a D-type Flip-flop (FF) and an ADB, the structure
of KEYGEN is illustrated in Fig. 5(a). The key_out of KEYGEN is
connected to the key-input of the GK as shown in Fig. 5(b). A, B are
delay elements in ADB with delay values DA and DB, respectively,
and (k1, k2) selects one of four inputs of the MUX to key_out.
Fig. 6 shows a timing diagram of the signal key_out of KEYGEN
with DA=3ns, DB=6ns. The function of each assignment of (k1, k2)
is transmitting constant O, shifting a transitional signal with delay of
DA, shifting a transitional signal with delay of DB, and transmitting
constant 1 from the top to the bottom of Fig. 6.

III. BEHAVIOR OF GLITCHES

When the length of a glitch is adjustable by designers, a glitch is
not a waste anymore. As we discussed in Sec. II-A, the length of
glitch generated by a GK is predetermined. Designers can exploit
glitches to transmit correct data as conventional key-gates do at
precise timing. Fig. 7 shows four scenarios that clock and output y of
the GK work well without violating the setup time and the hold time
constraints of a FF. The glitch in Figs. 7(a), 7(b), and 7(c) are the
same glitch but triggered at different timings. When the transmitted
data to the FF is encrypted on the level of the glitch, the starting
point of the glitch should be arrival prior to the setup time of the FF,
and the duration of the glitch should be long enough to meet the hold
time constraint as shown in Fig. 7(a). Figs. 7(b) and 7(c) show the
scenarios that the transmitted data to the FF is designed to be not on
the level of the glitch, and indicate that the complete glitch should
not interfere with the output. From Figs. 7(a), 7(b), and 7(c), we
can know that with different timings to trigger, the glitch will cause
different results. Fig. 7(d) shows a glitchless scenario that the GK
is used to transmit data when the key input is a constant O or 1. In
addition to these four scenarios, the glitch generated by the GK will
violate the timing constraints.

IV. TIMING CONSTRAINTS AND DESIGN FLOW
In this section, we introduce the insertion of GKs into designs from
the viewpoint of implementation. In Sec. IV-A, we explain the timing
constraints, and introduce different timings to assign transitions on the
key-inputs for different behavior of GKs. In Sec. IV-B, we propose
a design flow for achieving the proposed encryption.

Different assignments of (k,, k)

o e Y [e
y =

setup time

hald time setup time hold time

{a) (b}

clk I clk | I
EEEESSE R S ;

setup time

hold time setup time hold time

(© (d)
Fig. 7. Scenarios that values can be transmitted without timing violations.

A. Timing Constraints

First, let us review the timing constraints about the path delays
from FF ¢ to FF j in [12].

LBij = Ty +T; = Ti

; (D
UBij =Tk +T; — Ty — T2,y

The lower bound of the path delay LB;; and the upper bound of
the path delay UB;; from FF ¢ to FF j are summarized in Eq. (1),
where T; and T are th¢ clock arrival times at FFs ¢ and 7, Tek is
the clock period, and 77,, and T}{ol 4 are the setup time and the hold
time of FF j. T; and T} may be different due to clock skew between
FFs ¢ and j. For example, assume that LB;; = 5ns, UB;; = 10ns,
and original valid path delay is 7ns. If the path delay does not exceed
10ns after inserting a GK into the propagation path between FFs
and j, this insertion is valid. In this section, we will extend Eq. (1)
to analyze the timing issue of the proposed GKs.

Fig. 8 is a simplified structure of the proposed GKs, where Path A
and PathB represent the paths consisting of the XOR/XNOR gate
and the inserted delay elements A and B, respectively.

The length of generated glitch (Lgiitcn) is determined by the
summation of PathA or PathB delay (Dpgn) and MUX delay
(Dmux), as shown in Eq. (2). This is because the transition on
key needs to go through the PathA or PathB and the MUX to update
the transition as we discussed in Sec. II-A.

Lgtiten = Dpath + Dvux 2)

If we want to transmit data on the level of the glitch to FF j, Lglitch
has to be designed as being greater than or equal to (772, + 77 ,,) to
satisfy the timing constraints of the FF j. However, after the arrival
of the original signal, only a limited timing period we can use for
inserting a GK without adjusting original clock cycle period. We will
then discuss the constraints for the insertion, and it can be used to
judge if a location is qualified for inserting the GK.

Turrivar 18 the time needed by the original signal to arrive at the
input z of GK. To obtain the correct value on the level of the glitch,
we have to ensure that the data has arrived at the input of the MUX
in GK before the transition occurs at the key-input. For example, in
Fig. 4, when a rising transition on the key occurs at 3ns, the MUX
selects Boy: as its output y. However, y works as a buffer during
the period of (3, 6) ns only when the value has already arrived at
B+ before the rising transition on the key at 3ns. Hence, GK needs
Diycady = Dpathp to make the value from x become the value of
the glitch and ready at B, before the rising transition. Based on
the same reason, the GK needs D,.cqay = Dpatna to make the value
from x become the value of the glitch and ready at A, before the

Fig. 8. A simplified structure of GK.

76

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

[

Do I

C [

DY’ T () |
e “‘_ | |
e (d) k>
!Thum\ |ngm£ Tt
0 1 7 8 9

Fig. 9. Levels of four glitches at the boundaries of ranges for assigning
transition on the key-input.

falling transition. Then Ty rivat +Dready represents the delay needed
for the success of glitch generation.

Next, we discuss Dyeqct in Eq. (3). When we assign a transition
to the key-input of GK, there is a latency (Dyecqct) to generate the
corresponding glitch at the output of GK. Since the key-input is also
connected to the selection pin of the MUX, Dyecact = Dmux.

LBij S Tarrival + Dready + Dreact S UBZ] (3)

If we want to transmit the data on the level of the glitch as Fig. 7(a),
we have to trigger glitch whose starting point should occur in the
range between LB;; and UB;; for complying with the setup time
constraints. Hence, Eq. (3) indicates that the summation of Tgyrivai+
Dy cady (delay for generating the glitch), and D.cqct (delay to trigger
the glitch) must be within the range between LB;; and UB;;.

LB’ij < Tarrival + max(Dpath) + Dyux < UB”)

However, if we want to transmit the data not on the level of glitch
as shown in Figs. 7(b) and (c), we do not need to comply with
the constraint described in Eq. (3). We only have to ensure that the
insertion of GK will not violate the original signal. As a result, Eq. (4)
indicates that the summation of Tyrrivai, max(Dpatn), and Dyux,
where max(Dpatn) is the largest one between delays of PathA and
PathB, has to be within the range between LB;; and U B;;.

Now we can use Eq. (2) to design a glitch with a proper length,
and use Eq. (3) and Eq. (4) to determine the position for inserting
the GK. The last issue we need to address is the timing for triggering
the glitch to determine the behavior of the GK.

In Fig. 9, assume that the clock cycle time is 8ns, the setup time
and the hold time of FF j are both 1ns, and the clock arrival time at
FF j (T}) is 8ns. Hence, UB;; = 8 —1 = Tns, LB;; = 1ns without
clock skew. In Fig. 9, we only show levels of four glitches with
length of 3ns at the boundaries of valid range for assigning transition
on key-input. (a) and (b) are the glitches used to transmit data on the
level of glitch. For glitch (a), the transition should be assigned before
UBij — Dreact to satisfy the setup time constraint. For glitch (b),
the transition should be assigned after 7; + T,le a— Lgtiteh — Dreact
to satisfy the hold time constraint. Hence, we summarize the range
of triggering in the first part of Eq. (5). The second part of Eq.
(5) ensures that the timing assigning the transition on the key-input
should be after T rivai + Dready because we need this delay to
generate the glitch as we discussed for Eq. (3).

Tj + T;led - Lglitch - Dreact < Ttrigger < UBW - (5)

and Tarrival + Dready S Ttrigger

(c) and (d) are the glitches used to transmit data not on the level
of glitch. These glitches will not interfere the setup time and the
hold time constraints of FF j. For glitch (c), the transition should be
assigned before UB;; — Lgiitch — Dreact to ensure no interfering
with the setup time constraint. For glitch (d), the transition should be

D'rea,ct

assigned after LB;j — Dycact to ensure no interfering with the hold
time constraint. Hence, we summarize the range in Eq. (6).
LBij - Dreact < Ttrigger < UB” - Lglit(:h - Dreact (6)
Finally, if the transition on the key-input is assigned at the timing
against Eq. (5) and Eq. (6), it will cause a timing violation. Having
information about timing ranges, we can determine the behavior of
the GK by assigning transitions on key-inputs in different timings.

B. Design Flow

We propose a design flow that cooperates with existing EDA
tools for achieving the proposed encryption. First, the original design
described in Verilog is synthesized by Design Compiler [18]. Then
the netlist is translated to a layout by a Placement and Routing
(P&R) tool - IC Compiler [19]. We also conduct timing analysis to
obtain the slack of each FF with PrimeTime [20]. Having this timing
information, we can determine feasible FF locations for inserting GKs
under the same clock period of the original circuit.

After selecting positions for the encryption, we specify the de-
sired behavior and structure of each GK, and insert GKs based on
encryption strategies. Then we insert the delay elements and the
corresponding KEYGEN of each GK into the netlist as shown in
Figs. 3 and 5 by altering the netlist. The way we used for inserting
delay elements is setting design constraints on the path that is for
adding delays. That is, we re-synthesize the modified netlist, which is
with GKs and the corresponding KEYGENSs insertion, using design
constraints. Design Compiler [18] maps delay elements from the
library for satisfying the constraints. After the re-synthesis, we pass
the design constraints to IC Compiler such that a layout satisfying
the constraints is obtained by adjusting the mapping of cells.

To examine if the insertions of GKs and their corresponding
KEYGENs work correctly, we further conduct timing analysis on
the FFs that receive the output values of GKs after the P&R stage.
If a GK and its corresponding KEYGEN are designed to generate
glitches working as Figs. 7(a) and 7(c), EDA tools will report that
the FF at the output of the GK is violated. This is because EDA
tool sums up the delays we deliberately inserted, which exceeds the
setup time of the FF. In fact, this delay is intentionally inserted for
generating glitches. The delay will not cause timing violation in the
actual circumstances on condition that we have ensured the starting
point and the ending point of the glitch do not violate the timing
constraints of the FF. To distinguish the “true” timing violation and
“false” timing violation, we can further check the arrival time of
each pin on the reported violated path. If there exists a true timing
violation after checking, the GK and its generator will be removed.
Then the design flow goes back to the feasible location selection
stage and repeat the procedure until there is no true timing violation.

There may have some concerns about the change of critical paths
due to the re-synthesis and the re-P&R. However, we can actively
avoid choosing FFs on the critical paths as the feasible FF locations
for inserting GKs. Furthermore, we adopt the same clock period
for the synthesis and P&R of encrypted circuits, such that no delay
overhead occurred on the critical paths.

V. SECURITY ANALYSIS OF GK
A. SAT Attack

As we have discussed in Sec. 1, SAT attack is based on finding
the DIP, which is an input pattern that can generate different outputs
under assigning different key-vectors to two copies of the encrypted
netlist. However, the output of our GK will be the same value under
the key-input assigned with a constant 1 and 0. That means no
possible DIPs occurring from our GK.

On the other hand, a glitch generated by our GK is a phenomenon
occurred within a signal transition. However, SAT solvers only work

77

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

on the stable logic value rather than logic transitions. Furthermore,
the value transmitted on the level of the glitch is invisible from the
viewpoint of logic implication. As a result, SAT attack cannot decrypt
designs with GKs encryption.

B. Enhanced SAT Attack

In [3], the authors successfully used SAT solvers to generate
patterns for detecting violations in rising and falling transitions.
They proposed the Timed Characteristic Function (TCF), which is
a function considering the timing features of the circuit, and used it
to construct a SAT problem with the timing constraints. To test the
delay defects, two patterns are needed to generate the transition for
testing. Hence, they transformed the circuit into TCF for handling
timing issue and into conjunctive normal form (CNF) for handling
functional issue. Then they used TCF and CNF to compose a SAT
problem, and used SAT solvers to generate the required patterns.

In our work, however, instead of being affected with delays, the
output of the GK can be designed as a glitch deliberately, which
is a phenomenon occurred within a signal transition. Both CNF
and TCF cannot model the behavior of glitches because the value
transmitted on the level of the glitch does not exist from the viewpoint
of the functionality. In other words, we can never derive the value
transmitted on the glitch through the CNF and TCF. As a result, the
work in [3] can handle the delay issue of circuits, but not the glitch
issue our work builds on.

C. Removal Attack

Removal attack is a method that removes or bypasses the security
structures and restoring the original function of the circuit. It can
effectively crack the SAT attack-resistant methods [13] [14]. The
security structures of these SAT attack-resistant methods usually
result in a phenomenon that the circuit may still have correct
outputs even applying incorrect key-vectors. Such feature indicates
that certain signals in the security structures have a high probability
of being 0 or 1. With these skews in signal probabilities, attackers
can locate the security structures or even derive their correct outputs
[15] [16].

On the contrary, removal attack does not quite effectively decrypt
conventional key-gates. This is because even these key-gates are
located, attacked still has to guess whether a buffer or an inverter
that each key-gate acts as. When the number of the key-gates grows,
the number of attacking guesses will grow exponentially. Although
our GK aims at defending against SAT attack, its strength of working
as a buffer or an inverter can also defend the removal attack.

D. Enhanced Removal Attack

To demonstrate the strength of the proposed GKs, we also consider
a new attacking method that combines SAT attack with removal
attack. The scenario of this new attacking method is as follows:

1) Attackers locate the security structure in the encrypted circuit.

2) Each security structure is replaced by an XOR gate with a key-
input, or is replaced by a MUX having multiple encryption
behavior from the MUX’s inputs and selected by key-inputs.

3) SAT attack is applied to crack the encryption.

This attacking method is effective to decrypt circuits when the
security structures are located. To defend against this new attacking
method, we can combine the withholding technique [5] [6] with our
GK. As a result, we are able to prevent this new attacking method
from modeling encryption behavior of GKs and from applying SAT
attack to decrypt the encrypted circuits further.

The withholding is an encryption method storing the truth table
of a subcircuit into a lookup table (LUT), and the LUT is not
accessible externally. With the technique, the subcircuit is operated
normally but its netlist is invisible to attackers. As the number of input

78

‘Withholding i Withholding

wr

(b)

(a)
Fig. 10. (a) An AND gate encrypted by our GK. (b) An example of our GK
associated with the withholding technique by reusing an AND gate.

TABLE I
THE NUMBER OF AVAILABLE FFS FOR ENCRYPTION.
Bench. | [Cell] [[FF| [[Ava. FF| | Cov. (%) | [Ava. FF] [4]
s 341 18 16 88.89 4
s5378 775 163 104 63.80 89
59324 613 145 74 51.03 59
s13207 901 330 185 56.06 36
s15850 447 134 58 43.28 51
s38417 | 5397 | 1564 1037 66.30 920
$38584 5304 [1168 924 79.11 105
[Ave | — 6407] |

increases, the size of LUT increases exponentially, and the possible
combinations of the encrypted subcircuit even increase drastically.
Fig. 10 is an example of our GK associated with the withholding
technique by reusing an AND gate from the encrypted path in the
original circuit, which is at the input x of the GK. We can encrypt
the GK with more gates into LUT to elevate the security level
of encryption. Hence, this new attacking method gets into trouble
dealing with the huge number of the possible encryption behaviors.

VI. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed GKs, we encrypt
some sequential benchmarks from IWLS2005 Benchmark [22]. Each
benchmark was first synthesized and optimized by Design Compiler
(DC) with TSMC 0.13um (CLO13G) Process 1.2-Volt SAGE-X™
Standard Cell Library, then is analyzed by PrimeTime for timing
report. At last, we ran P&R with IC Compiler (ICC).

In our experiments, GKs inserted in the benchmarks are all
designed to transmit values on the levels of glitches with length of
Ins. This is because this scenario needs the strictest requirement. We
kept the same clock period applied on the circuit before and after
encryptions to show no timing overhead of the proposed GK. The
ADB in each KEYGEN for GK was designed as Fig. 5 for generating
transitions at different timings depending on its key-inputs.

Table 1 shows the experimental results about the number of
available FFs for encryption in the benchmarks. Columns 1 to 3 are
benchmark information after synthesis and optimization. Columns
4 and 5 show the number and the ratio of FFs (Cov.) that can
be encrypted with GKs. According to Table I, 64.07% of FFs
can be encrypted in optimized designs on average, indicating high
applicability of the proposed encryption method. However, the area
overhead might be too large when all of these available FFs are
encrypted. The last column shows the number of FFs selected by an
algorithm [4] from the available FFs. The algorithm aims at searching
for a group of FFs fanouting to the same set of POs. Then we can
select FFs to be encrypted among this group of FFs, which are able
to defend against the Scan-based Attack [4] with a higher probability.

Hence, we selected some FFs among this set of available FFs and
reported the overhead as shown in Table II. We inserted 4, 8, and 16
GKs separately on each benchmark if applicable, and each GK with
its KEYGEN designed as Fig. 5 provided two key-inputs.

According to Table II, we can see that the overhead of cell number
and cell area grows with the increase of the number of inserted GKs.
This overhead is not small and is not proportional to the number of
logic gates that each GK uses due to the following reasons:

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

1) We set design constraints on the paths to automatically insert
delays into GK and its KEYGEN by DC and ICC.

2) The inserted delay elements, e.g., inverters or buffers are all
from the cell library to composite a unique delay it needs.

3) The number of these delay elements is often larger than that
of logic gates we used for GK and KEYGEN.

Hence, the delay elements for generating a unique delay value is far
from being optimal currently. When the customized delay elements
for GKs are available, the area overhead will be significantly reduced.
This issue is out of the scope of current paper and will be our future
work for a solid encryption practice.

We also ran SAT attack on these encrypted designs to evaluate
the defense ability of our GK. Before SAT attack decrypts sequential
circuits, it will first extract the combinational part from the original
sequential circuit. Hence, we transformed the encrypted sequential
circuits into combinational by treating the inputs and outputs of FFs
as pseudo primary outputs and inputs, respectively. We removed the
KEYGEN of each GK and treated its key-input as the key-input of
the design. Then we apply SAT attack on the transformed circuits.
Not surprisingly, the attack stopped at the first iteration of searching
the DIP and reported unsatisfiable. The results demonstrate that our
GK can prevent SAT attack from finding out the DIP. Without DIPs,
SAT attack will be invalid.

We have explained that our GK has strong defense against the
SAT attack. In general, the strength of encryption is highly positively
correlational to the number of key-gates and key-inputs. Additionally,
a GK also can act as an inverter or a buffer just like conventional
key-gate does, and the behaviors provide a stronger corruptibility to
POs than other SAT resistant methods. However, our GK may has a
weakness when there are built-in self-test (BIST) structures such as
scan-chain in the circuit. This is because GKs are used to encrypt
the input of FFs, and scan-chain can be designed to test the paths
between FFs in sequential circuits. When the test is applicable to the
FFs on both sides of the path, the GK that works solely to encrypt the
input of FF at the end of the path can provide only limited security.

To solve this possible problem, we can encrypt the circuit using our
GK with other logic locking methods [1] [9]. That is, our GK defends
against SAT attack for these additional logic locking methods, and
these additional logic locking methods also help GK elevate the
security level. Therefore, we conducted the experiments that inserting
GKs and conventional XOR/XNOR [9] for encryption. Specifically,
we insert XOR gates to the paths encrypted by GK to defend against
the attack from BIST. We randomly used one half of the key-inputs
to control the XOR key-gates, and the other half is for GKs. The
column 3 and 4 in Table II shows the overhead comparison between
the encryption with GK only, and the hybrid encryption with XOR
gates and GKs. We can see that the overhead is reduced substantially
by using XOR/GK encryption. From the result of this experiment
and the discussion in Sec. V-D, we can conclude that our GK assists
previous encryption methods to defend SAT attack. Besides, the
previous encryption methods can also strengthen the security of GK.

VII. CONCLUSION

In this paper, we propose schemes of Glitch Key-gates, which
strengthen logic locking against attacks, such as SAT attack and
removal attacks. In addition to constant values, GKs also use tran-
sitions as key inputs. Experimental results show that the proposed
method is able to insert a high percentage of key-gates for elevating
the security. Experimental results also show that a hybrid encryption
method combining GK with other logic locking methods strengthen
the defense, but with a smaller area overhead. We can conclude that
our GK can assist previous encryption methods to defend against
SAT attack, and they can also strengthen the security of GK.

REFERENCES . . .

[1] X. Chen et al.,, “Low-Overhead Implementation of Logic Encryption
Using Gate Replacement Techniques,” Int’l Symp. on Q. E. Design, 2017.

[2] C.-H. Chou et al., “Skew Minimization With Low Power for Wide-
Voltage-Range Multipower-Mode Designs,” IEEE Trans. on Very Large
Scale Integration Systems, 2016.

[3] S.-Y. Ho et al., “Automatic Test Pattern Generation for Delay Defects
Using Timed Characteristic Functions,” Int’l Conf. on Computer Aided
Design, 2013.

[4] R. Karmaka et al., “Encrypt Flip-Flop: A Novel Logic Encryption
Technique For Sequential Circuits,” arXiv:1801.04961 [cs.CR], 2018.

[5] S. Khaleghi et al., “IC piracy prevention via design withholding and
entanglement,” Asia and South Pacific Design Automation Conf., 2015.

[6] B. Liu et al., “Embedded Reconfigurable Logic for ASIC Design Obfus-
cation Against Supply Chain Attacks,” Design, Automation and Test in
Europe Conf. and Exhibition, 2014.

[7] J.Rajendran et al., “Fault Analysis-Based Logic Encryption,” IEEE Trans.
on Computers, vol. 64, no. 2, pp. 410-424, 2013.

[8] M. Rostami et al., “A Primer on Hardware Security: Models, Methods,
and Metrics,” in Proc. of the IEEE, vol. 10, no. 8, pp. 1283-1295, 2014.

[9] J. A. Roy et al., “Ending Piracy of Integrated Circuits,” Computer, vol.
43, no. 10, pp. 30-38, 2010.

[10] K. Shamsi et al., “AppSAT: Approximately Deobfuscating Integrated
Circuits,” Inte’l Symp. on Hardware Oriented Security Trust, 2017.

[11] P. Subramanyan et al., “Evaluating the Security of Logic Encryption
Algorithms,” Int’l Symp. on Hardware Oriented Security Trust, 2015.
[12] Y. Xie et al., “Delay Locking: Security Enhancement of Logic Locking

against IC Counterfeiting and Overproduction,” Design Auto. Conf., 2017.

[13] Y. Xie et al., “Mitigating SAT Attack on Logic Locking,” Int’l Conf. on
Cryptographic Hardware and Embedded Systems, 2016.

[14] M. Yasin et al., “SARlock: SAT Attack Resistant Logic Locking,” Int’l
Symp. on Hardware Oriented Security Trust, 2016.

[15] M. Yasin et al., “Security Analysis of Anti-SAT,” Asia and South Pacific
Design Automation Conf., 2016.

[16] M. Yasin et al., “Removal Attacks on Logic Locking and Camouflaging
Techniques,” IEEE Trans. on Emerging Topics in Computing, 2017.

[17] J. Zhang, “A Practical Logic Obfuscation Technique for Hardware
Security,” IEEE Trans. on Very Large Scale Integration Systems, 2015.

[18] (April 20, 2018). Synopsys Design Compiler. [Online]. Available:
https://www.synopsys.com

[19] (April 20, 2018). Synopsys IC Compiler. [Online]. Available:
https://www.synopsys.com

[20] (April 20, 2018). Synopsys PrimeTime. [Online]. Available:
https://www.synopsys.com

[21] (April 20, 2018). Synopsys Verdi. [Online]. Available:
http://www.synopsys.com

[22] (April 20, 2018). IWLS2005 Benchmarks. [Online]. Available:

http://iwls.org/iwls2005/benchmarks.html

TABLE I
THE OVERHEAD OF OUR APPROACH AFTER INSERTING DIFFERENT NUMBERS OF GKS.

4 GKs, 8 key-inputs GKs, 16 key-inputs 16 GKs, 32 key-inputs 8 GKs + 16 XORs, 32 key-inputs
Bench. | [Cell] OH (%) | Area OH (%) | [Cell] OH (%) | Area OH (%) | [Cell OH (%) | Area OH(%) | [Celll OH (%) [Area OH(%)
s1238 22.87 38.51 — — - - — -
s5378 10.06 9.12 17.29 16.93 33.03 3791 21.68 19.65
s9234 8.81 8.54 19.90 20.49 38.34 12.37 21.53 21.78
s13207 6.77 5.79 15.09 11.10 29.97 23.10 13.65 11.08
s15850 15.44 9.30 28.41 21.23 54.59 4276 33.11 25.46
s38417 0.74 .71 217 0.66 472 4132 2.20 0.66
s38584 1.69 1.80 293 292 5.64 6.20 3.20 3.26

[Avg. | 9.487] 10.68 | 1430 | 12722] 27.63] 26.11]| 159] 13.65]
79

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 26,2020 at 23:41:15 UTC from IEEE Xplore. Restrictions apply.

